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Abstract

When a shallow arch is subjected to an in-plane load that is applied suddenly, the arch will oscillate about an equilibrium

position due to the kinetic energy imparted to the arch by the sudden load. If the suddenly applied load is sufficient large,

the motion of the arch may reach an unstable equilibrium position, leading to dynamic buckling of the arch. This paper

presents a study of the dynamic in-plane buckling of a shallow pin-ended circular arch under a central radial load that is

applied suddenly with infinite duration. The method of conservation of energy is used to establish the criterion for dynamic

buckling of the shallow pin-ended arch and analytical solutions for the lower and upper dynamic buckling loads of the arch

under this sudden central load with infinite duration are obtained. It is found that the dynamic buckling loads of a shallow

pin-ended arch under a sudden central load with infinite duration are lower than its static buckling loads, and that the

dynamic buckling load increases with an increase of a dimensionless arch geometric parameter that is introduced. The

effect of static preloading on the dynamic buckling of a shallow pin-ended arch is also investigated. It is found that the pre-

applied static load decreases its dynamic buckling loads, but increases the sum of the pre-applied load and the dynamic

buckling load.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

When an in-plane load is applied suddenly to a shallow circular arch that is fully braced laterally (Fig. 1),
the load will impart kinetic energy to the arch and will cause the arch to oscillate about an equilibrium
position. If this suddenly applied load is sufficiently large, the arch may reach an unstable equilibrium
position, which may then induce dynamic buckling of the arch.

Investigations of the dynamic buckling of shallow arches have concentrated on sinusoidal arches under
loads distributed as half-sine waves [1–8]. In these studies, sine series methods were used and the coupling
between the normal and axial deformations was not considered. Ignoring this coupling may be valid for very
shallow sinusoidal arches. However, the coupling between the radial (normal) and axial displacements in a
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. Pin-ended shallow arch: (a) pin-ended arch and (b) sudden load with infinite duration.
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circular shallow arch should not be ignored, particularly when exact closed form solutions are sought. Gjelsvik
and Bodner [9] investigated the static instability of fixed shallow circular arches with a rectangular solid cross-
section subjected to central point loading using an energy method, and approximate solutions were obtained.
Schreyer and Masur [10] presented an accurate analysis of shallow circular arches and derived analytical
solutions for static buckling, but their analysis was limited to fixed arches with a rectangular solid section.
Dickie and Broughton [11] used a series method to study the static buckling of shallow circular pin-ended and
fixed arches. Their study was also confined to rectangular solid cross-sections and only approximate numerical
solutions were obtained. Pi et al. [12] obtained exact solutions for the in-plane static nonlinear buckling of
circular arches with an arbitrary cross-section that are subjected to a radial load distributed uniformly around
the arch axis, while Bradford et al. [13] performed an exact analysis for the in-plane static nonlinear buckling
of circular arches with an arbitrary cross-section that are subjected to a central concentrated radial load. It
was found that the structural behaviour of shallow arches becomes quite nonlinear under large loads and that
the coupling between the radial and axial deformations is significant when predicting the structural behaviour
of shallow arches. Hence, the effects of this nonlinearity on the in-plane buckling and the coupling between the
radial and axial deformations needs to be considered in the analysis. Matsunaga [14] used the method of
power series expansion of the displacement components to investigate the free vibration and dynamic stability
of circular arches and presented an approximate theory for the dynamic buckling loads of shallow circular
arches. Huang et al. [15] obtained series solutions in conjunction with a matrix analysis for the dynamic
buckling of shallow circular arches including shear deformation. It was found that the accuracy of the results
depended on the number of elements and on the number of terms in the series solutions. Kounadis et al. [16]
performed a comprehensive nonlinear stability analysis for a one-degree-of-freedom arch and established its
dynamic snap-through buckling strength under impact loading. Levitas et al. [17] used Poincaré-like simple
cell mapping to present a study of the global dynamic stability of a shallow elastic arch that is subjected to
uniform constant radial loading. Pinto and Gonc-alves [18] investigated a strategy for the active nonlinear
control of the oscillation of a shallow arch-like simply supported buckled beam in order to prevent dynamic
instability.

It is known [1–8] that three different methods can be used successfully for determining the critical conditions
for the dynamic stability of dynamically loaded elastic structures. The first method uses numerical solutions of
the equations of motion of the structural system for various values of the load parameter to obtain the
response of the system [1,2]. The load parameter at which there exists a large change in the response is
considered as the critical one. The second method uses the total energy phase plane of a structural system [3].
Critical conditions are related to the characteristics of the system’s phase plane, and the emphasis is on
establishing sufficient conditions for stability and for instability. The third method is based on the principle of
energy conservation [4], and so it can only be applied to a conservative system. The major merit of the third
method is that it is devoted to finding the criterion which allows the dynamic buckling load to be determined
without actually having to solve the equations of motion. Kounadis et al. [16,19,20] further developed energy
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and geometric methods, performed a number of investigations of the nonlinear dynamic buckling of
autonomous systems, and proposed useful dynamic buckling criteria based on an energy consideration. They
studied the nonlinear dynamic buckling of autonomous non-dissipative N-degree-of-freedom systems [20],
established dynamic instability criteria using characteristic distances associated with the geometry of the zero
level total potential energy, and demonstrated the reliability and efficiency of the criteria by comparison with
the results based on the Verner–Runge–Kutta scheme. In this paper, attention will be directed to using the
third method to investigate the dynamic buckling of shallow arches. In some cases, a shallow arch may be
subjected to a static load before the sudden load is applied. The behaviour of the shallow arch may become
nonlinear under this static preloading and its dynamic buckling behaviour may be influenced by the static
preloading, which also warrants an investigation.

The fourfold purposes of this paper are to investigate the in-plane dynamic buckling of a shallow pin-ended
circular arch with a uniform cross-section that is subjected to a sudden central radial load which has an infinite
duration (Fig. 1); to establish the criterion for the dynamic buckling of the arch using the principle of energy
conservation; to obtain analytical solutions for the dynamic buckling of the shallow pin-ended arch under the
sudden central load with infinite duration; and to study the effect of a static preloading on the dynamic
buckling of the shallow pin-ended arch.
2. Differential equations of motion

The longitudinal normal strain � at an arbitrary point on the cross-section of the circular arch can be
expressed as the sum of the membrane strain �m and bending strain �b as [12]

� ¼ �m þ �b with �m ¼ ~w0 � ~vþ
1

2
~v02 and �b ¼ �

y~v00

R
, (1)

where ð Þ0 ¼ qð Þ=qy, y is the angular coordinate, ~v ¼ v=R, ~w ¼ w=R, v and w are the radial and axial
displacements of the centroid, R is the initial radius of the circular arch, and y is the coordinate of the point P

in the principal axis system (Fig. 1).
It is assumed in this study that the dynamic response of the arch is undamped and that the rotatory kinetic

energy can be neglected [4,17]. The Lagrangian L of the arch and load system can then be expressed as

L ¼ T �U , (2)

where T is the kinetic energy given by

T ¼
1

2

Z
V

mð_v2 þ _w2ÞdV ¼
mA

2

Z Y

�Y
R3ð_~v2 þ _~w

2
Þdy, (3)

where _ð Þ ¼ qð Þ=qt, t is the time, m is the mass density of the material, Y is a half of the included angle of the
arch, and U is the total potential energy of the arch and load system given by

U ¼
1

2

Z Y

�Y

Z
A

ER�2 dAdy�
Z Y

�Y
d̄ðyÞQR~vdy ¼

Z Y

�Y

1

2
EAR�2m þ EIx

~v002

R

� �
� d̄ðyÞQR~v

� �
dy, (4)

in which E is the Young’s modulus, A is the area of the cross-section, Ix is the second moment of area of the
cross-section about its major principal axis, and d̄ is the Dirac delta function.

Substituting Eq. (1) into Eq. (2) and dividing Eq. (2) by the factor EAR leads to a dimensionless form of the
Lagrangian as

L̄ ¼ T̄ � Ū ¼

Z Y

�Y

1

2

mR2

E
ð_~v2 þ _~w

2
Þ �

1

2
�2m þ

r2x ~v
002

R2

� �
�

d̄ðyÞQ
EA

~v

� �� �
dy, (5)

where rx ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ix=A

p
is the radius of gyration of the cross-section about its major principal axis.
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The equation of motion can be derived from Hamilton’s principle which can be stated in the formZ t2

t1

dL̄ dt ¼

Z t2

t1

dðT̄ � ŪÞdt ¼ 0 with d~v ¼ d ~w ¼ 0 at t ¼ t1; t2 for �YpypY, (6)

where t1 and t2 are arbitrary times.
Substituting Eq. (5) into Eq. (6), integrating by parts, and considering d~v ¼ d ~w ¼ 0 at t ¼ t1; t2 leads toZ t2

t1

Z Y

�Y

r2x
R2

~viv � �m ~v
00 � �0m ~v

0 � �m �
d̄ðyÞQ

EA
þ

mR2

E
€~v

� �
d~v� �0m �

mR2

E
€~w

� �
d ~w

� �
dydt

þ

Z t2

t1

�m ~v
0d~vþ

r2x
R2

~v00d~v0 � ~v000d~vð Þ þ �md ~w
� �Y

�Y
dt ¼ 0. (7)

Because the virtual displacements d~v and d ~w are arbitrary by definition, which implies that they can be
assigned any infinitesimal values, if these values are compatible with the system constraints such as its
kinematical boundary conditions, Eq. (7) can be satisfied for all infinitesimal values of d~v and d ~w if and only if

�0m �
mR2

E
€~w ¼ 0 (8)

for the axial deformation, and

r2x
R2

~viv � �m ~v
00 � �0m ~v

0 � �m þ
mR2

E
€~v ¼

d̄ðyÞQ
EA

(9)

for the radial deformation; and at the boundaries y ¼ �Y

~v00 ¼ 0. (10)

In addition, the kinematical boundary conditions that

~w ¼ 0 at y ¼ �Y (11)

for the axial direction; and

~v ¼ 0 at y ¼ �Y (12)

for the radial direction need to be satisfied.
3. Static stability analysis

3.1. Nonlinear equilibrium

In order to use the principle of energy conservation to investigate the dynamic buckling of a shallow pin-
ended arch under a suddenly applied central load with infinite duration, a knowledge of the static primary
equilibrium path and of the secondary bifurcation equilibrium path of the arch under a static central load are
essential. Hence, the static stability of a shallow pin-ended arch is first investigated here. For the static stability
analysis, the displacements ~v and ~w are independent of time and so _~v ¼ €~v ¼ _~w ¼ €~w ¼ 0. In this case, from Eq.
(8), the membrane strain �m is a constant and can be written as

�m ¼ �
N̄

EA
, (13)

where N̄ is the internal axial compressive force in the arch.
By substituting Eqs. (8) and (13), the differential equation of equilibrium given by Eq. (9) becomes

~viv

m2
þ ~v00 ¼

d̄ðyÞQ
N̄
� 1, (14)
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where m is a dimensionless axial force parameter defined by

m2 ¼
N̄R2

EIx

. (15)

The solution of Eq. (14) can be obtained as

~v ¼
1

m2
1�

cosðmyÞ
cosðmYÞ

þ
m2Y2

2
�

m2y2

2
þ

Q̄

mY
tanðmYÞ cosðmyÞ � mYþHðyÞðmy� sinðmyÞÞ½ �

� �
, (16)

where the dimensionless load Q̄ is given by

Q̄ ¼
QR2Y
2EIx

(17)

and HðyÞ is a step function that is given by

HðyÞ ¼
1; y40;

�1; yo0:

(
(18)

From Eq. (1), ~w0 can be expressed as

~w0 ¼ �m þ ~v� 1
2
~v02. (19)

Integrating Eq. (19) over the entire arch then producesZ Y

�Y
~w0 dy ¼

Z Y

�Y
�m þ ~v�

~v02

2

� �
dy. (20)

Because the axial displacement ~w ¼ 0 at both pinned ends of the arch (y ¼ �Y), the left side of Eq. (20) is
given by Z Y

�Y
~w0 dy ¼ ~wjY�Y ¼ 0. (21)

Rewriting Eq. (13) as

�m ¼ �
N̄

EA
¼ �

N̄R2

EIx

1

R2

Ix

A
¼ �

m2r2x
R2

(22)

and substituting Eqs. (16) and (22) into Eq. (20) and then integrating Eq. (20) leads to the nonlinear
equilibrium equation for shallow pin-ended arches as the transcendental equation

A1Q̄2 þ B1Q̄þ C1 ¼ 0, (23)

where the coefficients A1, B1 and C1 are given by

A1 ¼
1

4m4Y4
sec2ðmYÞ �

3 tanðmYÞ
mY

þ 2

� �
, (24)

B1 ¼
1

2m4Y4

2 cosðmYÞ � mY sinðmYÞ

cosðmYÞ2
� 2

� �
, (25)

C1 ¼
mY
l

� �2

þ
ðmY� sinðmYÞ cosðmYÞÞ

4m3Y3 cosðmYÞ2
�

1

6
(26)

in which the dimensionless arch geometric parameter l is defined by

l ¼
RY2

rx

¼
S2

4rxR
¼

YS

2rx

. (27)

3.2. Limit instability

A typical variation of the load and displacement obtained from Eqs. (16) and (23) for an arch with a
geometric parameter l ¼ 5 is shown in Fig. 2. It is assumed that the arch is loaded in a displacement-
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controlled manner. As the displacement increases, the load increases along the stable equilibrium path �a until
the upper limit point a is reached. As the displacement continues to increase, the load decreases along the
unstable equilibrium path ab until the lower limit point b is reached. As the displacement increases further, the
load increases again along the stable equilibrium path bf. The loads corresponding to the upper and lower
limit points are known as the upper and lower limit instability loads, respectively.

However, in practice, an arch is usually loaded in a load-controlled manner. When the load is increased
further from the limit point a by an infinitesimal amount above the limit value, there is no adjacent
equilibrium state and the only possible equilibrium state exists at a finite distance apart, i.e. at the state
corresponding to the point c as shown in Fig. 2. Therefore, the arch snaps through from the equilibrium point
a to the equilibrium point c, as indicated by the dashed lines in Fig. 2, which are not an equilibrium path.
When the external load decreases, the arch follows the path fcb until the lower limit point b is reached. If the
load is further decreased by an infinitesimal amount, there is no adjacent equilibrium state and the arch will
snap-through to the equilibrium point d. Because of the snap-through phenomenon, the upper and lower limit
instability loads are also known as the upper and lower snap-through buckling loads.

From Eqs. (17) and (23), the load Q can be expressed as an implicit function of the dimensionless axial force
parameter m as F ðQ;mÞ ¼ 0. From calculus, the snap-through buckling load Q corresponding to the limit
points a and b can be obtained by setting

dQ

dm
¼ 0, (28)

which leads to an equilibrium equation for the snap-through buckling load Q̄st as

A2Q̄2
st þ B2Q̄st þ C2 ¼ 0, (29)

where the coefficients A2, B2 and C2 are given by

A2 ¼
1

8m4Y4
7 sec2ðmYÞ �

15 tanðmYÞ
mY

þ 8�
2mY tanðmYÞ
cos2ðmYÞ

� �
, (30)

B2 ¼
1

4m4Y4

8

cosðmYÞ
�

5mY tanðmYÞ
cosðmYÞ

� 8�
m2Y2

cosðmYÞ
þ

2m2Y2

cosðmYÞ

� �
, (31)

C2 ¼
1

8m2Y2

3

cos2ðmYÞ
�

3 tanðmYÞ
mY

�
2mY tanðmYÞ
cos2ðmYÞ

� �
�

mY
l

� �2

. (32)
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The snap-through buckling load Q̄st of an arch and the corresponding axial force parameter m can be obtained
by solving Eqs. (23) and (29) simultaneously. The buckling loads obtained from Eqs. (23) to (29) for the arch
with l ¼ 5 are also shown in Fig. 2.

3.3. Bifurcation buckling

In addition to symmetric snap-through buckling, an arch may buckle in an antisymmetric bifurcation mode
under a constant load from a prebuckling equilibrium configuration defined by f~v; ~wg to a buckled equilibrium
configuration defined by f~vþ ~vb; ~wþ ~wbg, where ~vb and ~wb are the buckling displacements in the radial and
axial directions, respectively. By considering equilibrium in the prebuckled and buckled configurations, the
differential equations of buckling equilibrium can be obtained as

�0mb ¼ 0 (33)

for the axial deformations; and

~viv
b

m2
þ ~v00b ¼

R2�mb

r2xm2
ð1þ ~v00Þ (34)

for the radial deformations, where

�mb ¼ ~w0b � ~vb þ ~v
0 ~v0b (35)

is the membrane strain due to the buckling displacements, and where the second-order term ~v0b
2=2 of the

infinitesimal buckling deformation ~v0b is ignored.
The corresponding boundary conditions for buckling equilibrium are given by

~wb ¼ 0 at y ¼ �Y (36)

for the axial direction; and by

~vb ¼ 0 and ~v00b ¼ 0 at y ¼ �Y (37)

for the radial direction.
It can be obtained from Eq. (35) that

~w0b ¼ �mb þ ~vb � ~v
0 ~v0b. (38)

Integrating Eq. (38) over the entire arch leads to

1

2Y

Z Y

�Y
~w0b dy ¼

1

2Y

Z Y

�Y
ð�mb þ ~vb � ~v

0 ~v0bÞdy. (39)

From the boundary condition given by Eq. (36), the left side of Eq. (39) vanishes as

1

2Y

Z Y

�Y
~w0b dy ¼ ~wbj

Y
�Y ¼ 0. (40)

On the right side of Eq. (39), the prebuckling radial displacements ~v are symmetric and the prebuckling slopes
~v0 are antisymmetric while the buckling displacements ~vb are antisymmetric and the slopes ~v0b are symmetric.
Therefore the terms ~vb and ~v0 ~v0b are antisymmetric and so are odd functions of the angular coordinate y, and
their integration in the symmetric interval ½�Y;Y� also vanishes as

1

2Y

Z Y

�Y
ð~vb � ~v

0 ~v0bÞdy ¼ 0. (41)

Substituting Eqs. (40) and (41) into Eq. (39), and considering that from Eq. (33) the buckling membrane strain
�mb is a constant leads to

1

2Y

Z Y

�Y
�mb dy ¼ �mb ¼ 0, (42)
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which indicates the membrane strain �mb during buckling vanishes. By substituting �mb ¼ 0 given by Eq. (42)
into Eq. (34), the homogeneous differential equation for antisymmetric buckling of shallow arches is obtained
as

~viv
b

m2
þ ~v00b ¼ 0. (43)

The general solution of Eq. (43) can be written as

~vb ¼ E1 cosðmyÞ þ E2 sinðmyÞ þ E3yþ E4. (44)

Using the boundary conditions given by Eq. (37) leads to a group of four homogeneous algebraic equations
for E1, E2, E3 and E4. The existence of non-trivial solutions for E1–E4 requires vanishing of the determinant
of the coefficients matrix of the four equations, which leads to the characteristic equation that

sinðmYÞ cosðmYÞ ¼ 0. (45)

When the first factor of the characteristic equation (45) is equal to zero

sinðmYÞ ¼ 0, (46)

the lowest solution for mY is

mY ¼ p. (47)

Substituting the solution mY ¼ p into Eq. (23) leads to the equation for nonlinear antisymmetric bifurcation
buckling as

A3Q̄2
bf þ B3Q̄bf þ C3 ¼ 0, (48)

where the coefficients A3, B3 and C3 are given by

A3 ¼
3

4p4
; B3 ¼ �

2

p4
; C3 ¼

3� 2p2

12p2
þ

p2

l2
. (49)

The existence of real solutions of Eq. (49) for Q̄bf requires B2
3 � 4A3C3X0, which leads to

lXlb ¼ 7:97903, (50)

where lb defines the lowest arch geometric parameter of an arch for antisymmetric bifurcation buckling. An
arch with a geometric parameter lolb does not buckle in an antisymmetric bifurcation mode.

However, lXlb does not guarantee the occurrence of bifurcation buckling because the bifurcation point
may be located on the unstable equilibrium path after the instability limit. By letting the snap-through
buckling load Q̄st at mY ¼ p, obtained from Eq. (29), equal the bifurcation buckling load Q̄bf , obtained from
Eq. (48), the value of the geometric parameter lsb that defines a switch between the snap-through and
bifurcation buckling modes can be found as

lsb ¼ 10:249505. (51)

The variation of the loads and displacements obtained from Eqs. (16) and (48) for an arch with a geometric
parameter l ¼ 12 is shown in Fig. 3. As the displacement increases, the load increases along the stable
equilibrium path �a until the upper bifurcation point a is reached. As the displacement continues to increase,
the load decreases along the secondary bifurcation unstable equilibrium path ab until the lower bifurcation
point b is reached. As the displacement increases further, the equilibrium bifurcates from the secondary
bifurcation equilibrium path to the primary stable equilibrium path bf and the load again increases with an
increase of the displacement along the stable equilibrium path bf.

The curve for primary equilibrium is also shown in Fig. 3. It can be seen that the upper limit instability load
at the limit point as is higher than the upper bifurcation buckling load, while the lower limit instability load at
the limit point bs is lower than the lower bifurcation buckling load. Hence, the limit instability cannot occur.
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3.4. Lowest buckling load

When the second factor of the characteristic equation (45) is equal to zero, i.e.

cosðmYÞ ¼ 0, (52)

the lowest solution for mY is

mY ¼
p
2

(53)

and the coefficient E1 in the buckling displacement given by Eq. (44) does not vanish. Substituting mY ¼ p=2
into Eq. (44) leads to the buckling displacement ~vb as

~vb ¼ E1 cos
py
2Y

, (54)

which is symmetric and does not lead to the vanishing of the buckling membrane strain �mb given by Eq. (35).
Hence, the solution given by Eq. (53) does not correspond to bifurcation buckling, but corresponds to
symmetric snap-through buckling.

Substituting the solution mY ¼ p=2 into Eq. (23) leads to the dimensionless buckling load Qst ¼ p=2, which
indicates that the upper and lower snap-through buckling loads are equal to each other when mY ¼ p=2.

The dimensionless central radial displacement ~vc corresponding to mY ¼ p=2 can be obtained from Eq. (16)
by setting y ¼ 0 as

~vcs ¼ lim
mY!�p=2

vc ¼
ðSÞ2

p2R2

p2

8
�

p
2
þ

2þ p
p
þ

1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð24� 18p2 þ p4 þ 48pÞ

p2
�

9p4

l2

s8<
:

9=
;, (55)

which is real if and only if

6ð24� 18p2 þ p4 þ 48pÞ
p2

�
9p4

l2
X0 (56)

from which

lXlsn ¼ 3:9053. (57)

When the geometric parameter of an arch lolsn, in-plane buckling does not occur and the arch behaves in a
similar way to a beam curved in elevation.
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The variation of the loads and displacements obtained from Eqs. (16) and (23) for the arch with a geometric
parameter lsn ¼ 3:9053 is shown in Fig. 4. This arch has the lowest buckling load Q̄st ¼ p=2 and the upper and
lower limit points merge into one. The total potential energies of the arch and load system at upper and lower
buckling loads are equal to each other and so the lowest buckling load is also known as the energy buckling
load [9,10].

The nonlinear static buckling under other loading and boundary conditions can be found in Pi et al.
[12,21,22].

4. Dynamic stability

4.1. Energy criterion for dynamic instability

The dynamic solution from the equation of motion for the buckling analysis is much more difficult than
using the equation of equilibrium for the static buckling analysis. At the same time, the complete dynamic
solution is usually not needed for a dynamic buckling analysis, and what is needed is to find the critical states
for the buckling. Herein, an effort will be devoted to finding the criterion that makes it possible to determine
the dynamic buckling load without actually having to solve the equations of motion of the arch system.
A dynamic load generally is one whose magnitude, direction, or point of application varies with time, and it is
difficult to solve the dynamic buckling problem of a structure under a general dynamic load. This paper
concentrates only on a sudden load with infinite duration, which is a special form of dynamic loading and is
suddenly applied at t ¼ 0. A suddenly applied load with infinite duration is also termed as a step load with
infinite duration [1,3,4,16,18].

For clarity and without loss of generality, the one degree-of-freedom system of Simitses [4] shown in Fig. 5
is used to establish the criterion for the dynamic buckling of a conservative system under a suddenly applied
horizontal load with infinite duration. The system consists of two rigid bars with the same length L pinned
together and the other ends of the two bars are pin-ended or simply supported (Fig. 5). A mass m is attached
to the pin-joint and a linear spring is connected to the pin-joint with the dimensions as shown in Fig. 5. The
motion of the system under a sudden horizontal load Q can be described by the rotation angle y. The system is
assumed to have an initial angle y0. In this case, the dimensionless total potential energy Ū of the system is
given by

Ū ¼
U

kL2
¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin y
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin y0

p
Þ
2
� Q̄ðcos y0 � cos yÞ, (58)
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where U is the total potential energy of the system, the dimensionless load Q̄ is given by Q̄ ¼ 2Q=kL, and k is
the stiffness of the spring (Fig. 5).

The static equilibrium points for the system can be obtained by setting

dŪ

dy
¼ 0, (59)

which leads to the static equilibrium equation as

Q̄ ¼
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin y
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin y0
p

Þ cos yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin y
p

sin y
. (60)

The variations of the dimensionless total potential energy Ū of the system with the rotation angle ðy� y0Þ are
shown in Fig. 6 for different values of the dimensionless load Q̄.

Because the structure and sudden load with infinite duration form a conservative system, the total energy
E ¼ T þU of the system must satisfy the principle of energy conservation, which can be expressed in a
dimensionless form as

Ē ¼ T̄ þ Ū ¼ constant with Ē ¼
E

kL2
; Ū ¼

U

kL2
; T̄ ¼

T

kL2
, (61)

where the dimensionless kinetic energy of the system T̄ is given by

T̄ ¼
T

kL2
¼

mðL_yÞ2

2kL2
¼

1

2
_y2, (62)

where T is the kinetic energy of the system, _y ¼ dy=dt is the dimensionless angular velocity of the system, and
the dimensionless time parameter t is defined by t ¼ t

ffiffiffiffiffiffiffiffiffi
k=m

p
.

It is assumed that before application of the load, the system is at rest without loading and so the constant in
Eq. (61) is equal to zero, i.e.

Ē ¼ T̄ þ Ū ¼ 0. (63)

From Eq. (62), the kinetic energy T̄ is a positive definite function of the velocity _y. Hence, from the principle of
energy conservation given by Eq. (63), motion of the system is possible when the total potential energy Ū is
non-positive. For a dimensionless load Q̄, two equilibrium positions can be found from Eq. (60): a stable
equilibrium position Ai and an unstable equilibrium position Bi as shown in Fig. 6 where y0 ¼ 0:006 at t ¼ 0.
When the value of Q̄ is small, for example Q̄ ¼ 0:4000 or 0:4150, it can be seen that the total potential energy
Ū corresponding to the unstable position B1 and B2 is positive. Hence, when the load Q̄ ¼ 0:4000 or 0:4150 is
suddenly applied, motion of the system corresponding to the unstable position B1 or B2 is impossible, and the
system does not buckle dynamically but simply oscillates about a stable equilibrium position A1 for Q̄ ¼

0:4000 or A2 for Q̄ ¼ 0:4150. As the dimensionless load Q̄ increases, the total potential energy Ū of the system
at the unstable equilibrium position Bi decreases. When the load Q̄ ¼ 0:4262 is suddenly applied, the total
potential energy Ū of the system at the unstable equilibrium position B3 is equal to zero (Ū ¼ 0), and from the
principle of energy conservation given by Eq. (63), the system can reach the unstable equilibrium position
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(saddle) B3 with zero kinetic energy. Subsequently, dynamic buckling of the system occurs at the load
Q̄ ¼ 0:4262. The dynamic buckling load Q̄ ¼ 0:4262 of the system satisfies both the equilibrium equation (60)
and the condition that the total potential energy Ū vanishes, i.e.

Ū ¼ 0. (64)

Hence, the dynamic buckling load and the corresponding rotation y can then be obtained by solving Eqs. (60)
and (64) simultaneously as Q̄d ¼ 0:4262 and y ¼ 0:1517602 under the condition y0 ¼ 0:006.

If the load Q is slowly applied to the system, it can be considered as a static load and the system may buckle
in a static mode. The static buckling load of the system needs to satisfy

d2Ū

dy2
¼ 0. (65)

Solving Eqs. (60) and (65) simultaneously yields the static buckling load as Q̄s ¼ 0:4350, which is higher than
the dynamic buckling load Q̄d ¼ 0:4262 of the system under a sudden loading with infinite duration.

4.2. Comparison with total energy-phase plane approach

To verify the reliability and efficiency of the energy criterion for dynamic buckling, the dynamic buckling
load obtained by the energy criterion for the one degree-of-freedom system is compared with that obtained by
a total energy-phase plane approach [2]. From Eqs. (64) to (62), Eq. (63) can be written as

Ē ¼ T̄ þ Ū ¼
1

2
_y2 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin y
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin y0

p
Þ
2
� Q̄ðcos y0 � cos yÞ ¼ 0, (66)

which is the equation of the phase trajectories for the motion of the system [4,16].
The typical trajectories of the phase-plane of _yðtÞ ( dyðtÞ=dt) and yðtÞ for different values of the sudden load

Q̄ can be obtained from Eq. (66), and are shown in Fig. 7 where Ai are the stable equilibrium points and Bi are
the unstable equilibrium points. It can be seen that when the load Q̄ ¼ 0:4000 or 0:4150 is suddenly applied,
the trajectories are closed and so an oscillatory periodic motion of the system about the near stable
equilibrium point Ai ði ¼ 1; 2Þ occurs. The motion is bounded and the oscillations cannot reach the unstable
equilibrium point Bi ði ¼ 1; 2Þ. However, when the load Q̄ ¼ 0:4262 is suddenly applied, the trajectory of the
phase plane is through the corresponding unstable equilibrium point B3 and becomes unbounded, and so
unbounded motion, i.e. dynamic buckling of the system, is possible. When a load Q̄ ¼ 0:4340 (40:4262) is



ARTICLE IN PRESS
Y.-L. Pi, M.A. Bradford / Journal of Sound and Vibration 317 (2008) 898–917910
suddenly applied, the trajectory of the phase plane is unbounded as shown in Fig. 7. Hence, from the
trajectories of the phase plane, the critical load for dynamic buckling of the system is Q̄d ¼ 0:4262, which is the
same as that obtained from the energy criterion developed in Section 4.1.

It is known [4,20] that as the number of degrees of freedom increases the complexity of using the total
energy-phase plane approach increases exponentially to the point of virtual impossibility when using the
approach. Using this approach for the continuum, the phase space has to be reduced to finite-dimensional
spaces.
4.3. Comparison with equations of motion approach

The equation of motion approach is probably the most commonly used approach [1–3,14,15]. Hence, the
dynamic buckling load obtained by the energy criterion for the one degree-of-freedom system is also compared
with that obtained by the equations of motion approach. The equation of motion for the one degree-of-freedom
system (Fig. 5) can be obtained in a dimensionless form as

€yþ cos y 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin y0
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sin y
p

� �
� Q̄ sin y ¼ 0. (67)

Eq. (67) can be solved numerically under the initial conditions yðtÞ ¼ y0 and _yðtÞ ¼ 0 at t ¼ 0 using a numerical
scheme such as the Runge–Kutta procedure. The results that are obtained for the dimensionless load
Q̄ ¼ 0:4000, 0:4150, 0:4261 and 0:4262 are shown in Fig. 8 as variations of yðtÞ with the dimensionless time t. It
can be seen from Fig. 8 that when the load Q̄ ¼ 0:4000, 0.4150 or 0.4261 is suddenly applied, the motion of the
system is simply oscillatory. The oscillation takes place between the initial position y0 ¼ 0:006 and a maximum
amplitude of yðtÞ that is smaller than the maximum allowable value yal ¼ p=2. When the load Q̄ ¼ 0:4262 is
suddenly applied, the amplitude of the motion of the system becomes so large that escaping motion, i.e. dynamic
buckling of the system, occurs as shown in Fig. 8.

Variations of the maximum response amplitude ymax with the dimensionless load Q̄ are shown in Fig. 9. It
can be seen that there is large jump in the maximum amplitude ymax at Q̄ ¼ 0:4262. According to the
Budiansky–Roth criterion [1], the dynamic buckling load is estimated to be Q̄ ¼ 0:4262, which is the same as
that obtained from the energy criterion in Section 4.1.
0 0.05 0.1 0.15 0.2 0.25
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

A1 A2 A3 B1B2B3A4 B4

θ0 = 0.006

Rotational motion θ(τ) (radian)

D
im

en
si

on
le

ss
 a

ng
ul

ar
 v

el
oc

ity
 d

θ(
τ)

/d
τ

Q = 0.4340
Q = 0.4262
Q = 0.4150
Q = 0.4000

2

Fig. 7. Trajectories in the phase plane.



ARTICLE IN PRESS
Y.-L. Pi, M.A. Bradford / Journal of Sound and Vibration 317 (2008) 898–917 911
Although the equation of motion approach can be used with numerical methods to deal with a continuum
subjected to a number of initial conditions by reducing the continuum to a multi-degree-of-freedom system,
calculations in this approach require a large amount of time, which often makes its application very difficult
for the analysis of multi-degree-of-freedom systems [17,20]. In addition, the accuracy of this approach often
depends on the number of degrees of freedom of the reduced system and on the accuracy of the numerical
method adopted [15].

4.4. Dynamic buckling load of shallow pin-ended arches

In this section, the energy criterion for the dynamic buckling developed and elucidated in Section 4.1 is
applied to the dynamic buckling analysis of shallow pin-ended arches under a suddenly applied central load
with infinite duration.

The dimensionless total potential energy Ū of the arch and load system can be obtained by substituting the
solution for the radial displacement given by Eq. (16) into the dimensionless total potential energy expression
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given by Eq. (4) and then integrating the expression as

Ū ¼ A4Q̄2 þ B4Q̄þ C4, (68)

A4 ¼
r2x½mYþ 4mY cos2ðmYÞ � 5 sinðmYÞ cosðmYÞ�

2m3Y2R2 cos2ðmYÞ
, (69)

B4 ¼
r2x½4 cosðmYÞ � 4 cos2ðmYÞ � m2Y2 cos2ðmYÞ � mY sinðmYÞ�

m2YR2 cos2ðmYÞ
, (70)

C4 ¼
r2xY
R2
þ

r2xY
2R2 cos2ðmYÞ

�
3r2x tanðmYÞ

2mR2
þ

r2xm
2Y3

R2

mY
l

� �2

. (71)

Before being subjected to the suddenly applied constant central load, the shallow arch is assumed to be free
from loading and at rest. In this case, the principle of energy conservation given by Eq. (63) has to be satisfied.
For a small load Q̄, the dimensionless total potential energy Ū given by Eq. (68) corresponding to a stable
equilibrium position may be non-positive and the kinetic energy imparted by the sudden load to the arch will
induce oscillation of the arch about the stable equilibrium position. However, under the small load Q̄, the
dimensionless total potential energy Ū corresponding to an unstable equilibrium position is positive and so the
motion of the arch to the unstable equilibrium position is impossible. As the value of the sudden load Q̄

increases, the dimensionless total potential energy Ū to an unstable equilibrium position decreases until it
becomes zero. From the principle of energy conservation, the arch can reach the unstable equilibrium position
with zero kinetic energy, and dynamic buckling of the arch may therefore occur. Hence, vanishing of the total
potential energy Ū of the arch

Ū ¼ A4Q̄
2 þ B4Q̄þ C4 ¼ 0 (72)

is a necessary condition for the dynamic buckling of a shallow pin-ended arch under a sudden central load of
infinite duration.

Because the dynamic buckling load corresponds to an unstable equilibrium position, it also needs to satisfy
the equilibrium equation given by Eq. (23). The dynamic buckling load and the corresponding unstable
equilibrium position can then be obtained by solving Eqs. (23) and (72) simultaneously. The equilibrium
equation given by Eq. (23) describes the primary symmetric deformation of the arch and the load obtained is
the upper dynamic buckling load. The total potential energy Ū may also vanish on the secondary bifurcation
unstable equilibrium path. In this case, the lower dynamic buckling load can be obtained by substituting
Eq. (47) into Eq. (72). Typical solutions for the upper and lower dynamic buckling loads are shown in Fig. 10
for an arch with a geometric parameter l ¼ 12 where the dimensionless load Q̄ is defined by Eq. (17). In
Fig. 10, the solid line is the primary equilibrium path under static loading, the dashed line is the secondary
equilibrium path for bifurcation buckling, and the dot-dashed line represents the variation of the
dimensionless load Q̄ and axial force parameter mY for the condition of zero total potential energy
(Ū ¼ 0). The intersection point du on the zero total potential energy curve and the unstable branch asebs on
the primary equilibrium path defines the upper dynamic buckling load while the intersection point dl on the
zero total potential energy curve and the secondary bifurcation equilibrium path ab defines the lower dynamic
buckling load.

The variations of the dimensionless upper and lower dynamic buckling loads QS2=8EIx with the arch
geometric parameter l are shown in Fig. 11. It can be seen that the dynamic buckling load increases with
an increase of the arch geometric parameter. The variations of the static buckling loads QS2=8EIx of
the arches given by Eqs. (29) and (48) with the geometric parameter l are also shown in Fig. 11. It can be seen
that both the upper and the lower dynamic buckling loads are lower than the corresponding static buckling
load.

To demonstrate the dynamic buckling behaviour, a typical dynamic buckling for a shallow pin-ended arch
with a geometric parameter l ¼ 6:5 is shown in Figs. 12 and 13. Fig. 12 shows the static equilibrium path in
terms of the dimensionless load Q̄ and the dimensionless axial force parameter mY, while Fig. 13 shows the
equilibrium path in terms of the dimensionless load Q̄ and the dimensionless central radial displacement vc=f .
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Also shown in Figs. 12 and 13 are the dynamic buckling load, and the static buckling loads (limit instability
load). The static buckling loads were obtained from Eqs. (23) to (29) while the dynamic buckling load was
obtained from Eqs. (23) to (72).

When the suddenly applied load Q̄ ¼ 1:65 is smaller than the dynamic buckling load, the dimensionless total
potential energy Ū of the system corresponding to the stable equilibrium point s is obtained from Eq. (68) as
Ū ¼ �0:18492r2xY=R2, which is negative, while the dimensionless total potential energy corresponding to the
unstable equilibrium point u is Ū ¼ 0:19127r2xY=R2, which is positive. Hence, the sudden load will induce
oscillation of the arch about the stable equilibrium position s and from the principle of energy conservation,
the motion of the arch to the unstable equilibrium point u is impossible and so dynamic buckling cannot
occur. However, when the suddenly applied load Q̄ reaches the critical value Q̄ ¼ 1:840652, the total potential
energy Ū corresponding to the unstable equilibrium position d vanishes (Ū ¼ 0) and so the arch may reach the
unstable equilibrium position d and buckle dynamically. Since under sudden loading, a displacement
controlled loading regime is impossible, the arch snaps through from the unstable equilibrium point d to a
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stable equilibrium point e which indicates the dynamic buckling of shallow arches under a sudden central load
with infinite duration occurs in a snap-through mode.

From the static investigation, when the geometric parameter of an arch lolsn, the arch behaves as a beam
with initial geometric imperfection. In this case, the dynamic buckling will not occur and the arch will oscillate
about an equilibrium position. When the geometric parameter of an arch is in the range lsnplplb, the arch
does not buckle in a bifurcation mode. In this case, the upper dynamic buckling load of an arch is equal to its
lower dynamic buckling load.
4.5. Effects of static preloading

In the previous discussion of dynamic buckling of a shallow pin-ended arch, the arch was assumed to be free
from loading until the sudden load is applied. In most cases, an arch is subjected to some static loading before
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the sudden load is applied, and the static load will influence the dynamic buckling of the shallow arch. Under a
static central concentrated load Q0, the corresponding axial force parameter m0 can be obtained from Eq. (23),
and the dimensionless total potential energy Ū0 of the arch system can then be obtained by substituting m0 into
Eq. (68) as

Ū0 ¼ A0
4Q̄2

0 þ B0
4Q̄0 þ C0

4 (73)

with

A0
4 ¼

r2x½m0Yþ 4m0Y cos2ðm0YÞ � 5 sinðm0YÞ cosðm0YÞ�
2m30Y

2R2 cos2ðm0YÞ
, (74)

B0
4 ¼

r2x½4 cosðm0YÞ � 4 cos2ðm0YÞ � m20Y
2 cos2ðm0YÞ � m0Y sinðm0YÞ�

m20YR2 cos2ðm0YÞ
, (75)

C0
4 ¼

r2xY
R2
þ

r2xY
2R2 cos2ðm0YÞ

�
3r2x tanðm0YÞ

2m0R
2
þ

r2xm
2
0Y

3

R2

m0Y
l

� �2

. (76)

In this case, the constant C in the principle of energy conservation given by Eq. (61) is equal to the
dimensionless total potential energy Ū0 of the preloaded arch system and so the principle of energy
conservation can be written in a dimensionless form as

Ū þ T̄ ¼ Ū0, (77)

where the dimensionless total potential energy Ū is given by Eq. (68).
The criterion for dynamic buckling of the statically preloaded arch can then be expressed as

Ū � Ū0 ¼ 0. (78)

Simultaneously solving Eqs. (23) and (78) yields the dynamic buckling load Q̄d of an arch with a static central
pre-applied load Q̄0. To show the effects of pre-applied static load on the dynamic buckling, the variations of
the dimensionless upper dynamic buckling loads Q̄d and Q̄d þ Q̄0 with the pre-applied static load Q̄0 for an
arch with a geometric parameter l ¼ 20 are shown in Fig. 14. Also shown in Fig. 14 are the static buckling
loads obtained from Eqs. (29) and (48) and the dynamic buckling load obtained from Eqs. (23) to (72). It can
be seen that the static preloading decreases the dynamic buckling loads Q̄d , but increases the total loads
Q̄0 þ Q̄d at the occurrence of dynamic buckling. It can also be seen that the total loads Q̄0 þ Q̄d are lower than
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the corresponding static buckling loads. As expected, when the pre-applied static load is higher than the static
buckling load of the arch, static buckling of the arch will occur under this static load.

5. Conclusions

This paper has used a method based on the principle of energy conservation to establish the criterion for the
in-plane dynamic buckling of shallow pin-ended circular arches that are subjected to a central radial load
applied suddenly with infinite duration. The merit of the criterion is that it can determine the critical buckling
load without the need to solve the equations of motion of the arch system. The exact total potential energy,
and the exact primary equilibrium and secondary bifurcation equilibrium paths have been obtained, which are
essential for the dynamic buckling analysis based on the principle of energy conservation. Analytical solutions
for the upper and lower dynamic buckling loads of shallow pin-ended arches under the sudden central
constant load with infinite duration have been obtained. Because they are based on the exact total potential
energy and equilibrium paths, the solutions for the dynamic buckling loads are accurate. It has been found
that the dynamic buckling load for a pin-ended arch increases with an increase of the arch geometric
parameter and that when the geometric parameter of an arch is less than the lowest geometric parameter
(lolb) for antisymmetric bifurcation buckling, the upper and lower dynamic buckling loads are equal to each
other. It has been found that the dynamic buckling load of a shallow pin-ended arch due to the sudden loading
is lower than its static counterpart. The effect of a static preloading on the dynamic buckling of a shallow
pin-ended arch has also been investigated. It has been found that the pre-applied static load decreases the
dynamic buckling load, but increases the total of the pre-applied load and the dynamic buckling load.
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